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In the present article we state a new approach o study nonlinear inverse problems for
partial differential equations. Our approach bases on transition to “loaded” composite
type equations [16]. As an example we consider the inverse problem for a parabolic
equation with two unknown coefficients. Parabolic inverse problems were studied by
many authors (see, for instance, [1-15) and the bibliography therein} but the problem we
address below is new,

Let D be a bounded domain in the space B®, z = (z;,...,2,) € D, t € (0,7),
0 < T < oo, and Q be the cylindrical domain D x {0, T). For simplicity, we assume
that the boundary I' of the domain D is infinitely differentiable.

Cousider the equation

Lu = p{z)uy, — Au 4 du + q(:r:)c(a:,t)u = flz,t}, (1)
where ) is a given positive constant, f(z,t) and c(z, ¢} ave given functions, and c(z,?) is
infinitely differentiable for (z,¢) € Q.

INVERSE PROBLEM 1. Find the functions u{z, 1), p{z) and g(z) satisfying (1) and the
following conditions:

u(z,0) = uo(z), w(z,0)=v(z), w(zT)=wn() for zeD, (2

u(z, t)!fe{ﬂ,’f) = p(2,1) _ ' (3)
(the functions uo(z), vo{z), vi{z), and p(z,t) are given).
We describe the method for studying Inverse Problem 1.
Put ¢ = 0 in the eguation A

| . Flu=te - | (%)
Under (1) and (2) we may find p(z) and g{z) by means of uy(z,0). Further, put ¢t = T'.
Considering (*) and (2), we derive the noniocal boundary conditions for uu(z, O) and
(2, T) ‘Look at the equation

5 _ _

3 L‘a fuo : (**)
“Forgetting” the condition u.(z, 0) = vo(z), we may obtain the nonlocal boundary problem
for “loaded” composite type equation (%x). To prove the existence theorem for this
problem, under mte?atmg we come to the existence theorem for Inverse Problem I

Suppose that the following condition is satisfied: there is a ﬁmctwrz U (z, t) in the space

C4{(Q) provided that

U(z,0) = uo(z), Ut(m,l}) = vo(2), U,(a: T)=w(z) for z €D, 4
Uz t)lexor) = p(2,t)- '
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Define the set V3: _
| = {v(z,t) : v € Ly(0, T; WA D)) [} Leo(Q),

v € La(0, T3 WHD)) [} Lol @),

va € L0, T Wi (D) [ ) Lol @), vt € L2(Q)}
it is obvious that V5 is a Banach space under the norm
llv|lv = vra.iﬁmax lol + vraiaz_nax vl + vzaiénax lvg)

~§*( / [0, + (Av)® + (Av)* + (Avu)z]dz:dt) 1/2;
Q

Define the functions -
A(z) = vo(z)e(z, D)vo(z) + ez, O)uo(2)], B(z) = —c(=,0)uo(z),
Ay(z) = [f(z,0) + Auo(z) ~ Auo(2)]{c(z, 0)vo(z) -+ crlz, O)uo(x)]
—[felz,0) + Duglz) — Avolzlelz, Q)uelz},
Cy(z) = [filz,0) + Avg(z) — Avg(z)]vo(z),
Di(z) = ~[f(2,0) + Auo(z) — duo(x)],
Aoz} = elz, T)v(z) Didz) — [fil2, T) + Awvi(z) ~ Ivi(z)| B(z),
Fo(z) = {filz, T) + Ani(z) — An(2)]A(z) — (2, Tn(z)Ci(z);
and the numbers :
: Gg = mﬁaxug(z:), by = mﬁin n{z),

= AX Ay(z) — Fg(z)
do=max i@ T A
by = max| fu(z, 1)) + 2iba| max fer(2, )] "“z?"i A(:))
—§~agm§x les(z, t)imax (::((m))

A ky
p-maxl;x“(:ct)], k“}\(l Th) = kzmax{A,kg, }

THE MAIN THEOREM. Assume that (4) holds and the functions f(z,t), fe(z,1), and
Fulz) are bounded and measurable on Q. Moreover, the following conditions are satisfied:
U falz,t) < 0,c(z,t) 2 0,cz,2) £ 0,cu(2,8) 20 for (z,8) € @ _ (5)
: oz, T)=0, ‘
Alz) > A°>0, Ai(z)> 4] >0,
Ci(z) > CY>0, B(z)<0, Di{z) <0

for x€D '(Ao A3, and C? are constants); - (8)
Fo( ) Al(”) 1
Folz) > 0 Al(z) + Ao(a:) < 0 for z€ .ﬁ | N
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pulz, i) <0, Ft(mst) <0, p(z,t) 20 for z e,ra te IO:T]-: (8)

Ao <1, kg < X1-Xo); (9)
vi(z) + kT < vp(z) <0, up(z)+8T >0 for z € D; (10)
Ay(2)pe(z, T) + Ao(®)pee(2,0) = Fo(z) for zel. . (11)

Then Iuverse Problem I has the solution {u(z,1), p(z), g(z)} such that u{z,t) € Vs, plz)
and g(x) are positive functions bounded almost everywhere on D.
Proof. Define the functions '
. Ay(z) _ Ci(=z) — Dy(z)|vu(z,0)|
0= A = Bl ol “) T AR~ B)lvale.0)
where v(z,£) € Va. Show that under (6) the functions p, and g, are positive on D and

under the condition v(z,t) € V, these functions are bounded almost everywizere on D,
Define the functions Go{€) and -G, () .

(0 if €<,
Go(€) = <& if € €[0,a0],
LG{} if 5)‘(10,

'bl': ﬁf 5 < bif
Gz({f) = 9 £= 'if E = {biao}a
106, o €>0

Finally, define the function:
fo(z,t) = fulz,t) - 2g.(2)cx(2, )Gi(ve(2, 1)) ~ gu(@)en(2, ) Gol(v (2, 1))

with v{z,t) € Vs.
Consider the boundary value problem: Find a solution to the equation

po(@)uen — Aviy + Aug + quo(2)eclz, thun = folz, t) (1)
satisfying the following conditions: |
Ai{z)uu(z,T) + Ag(ac)u“(:n 0} = Fole), | (12)
u(z,T) = n(2), u(z,0) = uo(z) for €D, (13)
va(2, )lrxor) = Hul(2, 1) | (19

Under conditions (4}, (6), (7), and (11) of the thecrem, there is a solution ug(z,1)

of the problem (1'), (12), (14) (see V. V. Shelukhin’s work [17]) belonging to the space.

W Q)N Loo(Q). After finding the function uan(z,t) it is easy to get the functxons u(z, )
and u{z, ). Moreover, this solution is as follows:

u(z,t) € WPHQ) [ L(Q)-

This defines the operator $: &(v) = u that & transforms the space V; into Vi We
show that @ has fixed points. .
Let Mg, M, M,, and Rp be some posatzve :w.mbers and let W be the set of functxons :

vz, t) in V3 satzsfymg (12)-(14) and the conditions
' vrmazgzax lu(z, )] < Mo, vrazagaax Jus(z, 8} < M;,

-migm lualz, t)| < Mo,
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/[uftt + (Au)® + (A'ug)2 + (Au;t)z.]d:cdt < Ry.

It is evident that W is convex, closed, and bounded. Show that there are numbers Mo,
M, Mg, and R for which the operator ® transforms the set W into W. The estimate of
the maximum principle for (1') implies the inequality

1
vrai max |uy(z,t)| < max { —sup |fo(2,1)|, 4, vrai max |uy(z, 0)1} .
Q Ao D

This inequality and (12) yield

. 1 :
vrai max |uy(z,t)| < max{xsup |f1,(z:,t)|,p,la°0} + Ao vraimax |ug(z, t)|.
Q 4] qQ

Furthermore, we have

1
vrai max |ug(z,t)| < : max supjf,,(:z, )|, p, ko (15)
Q 1-— /\0 /\

The function f,(z.t) can be estimated

sup | fu(2,t)| < ka1 + ko Mo

Q
Together with (15) we have
vrai max |ug(z,t)| < : & ko +LM (16)
e Pl ST L T T
Let the number M, satisfy the condition
' A k1
M2 e A(l e AU) ax{?akﬂnu}‘

Then (16) and (9) imply the estimate
veaimax fue(z, )] < My. (an)
Q

In turn, (17) and (13) imply the estimate _
vraimax |us(z,t)| < maxvy(z) + T M,.
Q D

Let M, satisfy the condition :
M, > maxuv,(z) + TM,.
Then we have _
vrai_gnax Iut(z, t)l S MI°
Q 3
Analogously, M, satisfies the condition
) Mg __>_ mgxug(a:) + TMl.

Then
vraiama.x lu(z, )] < Mo.

Rewrite (1) as follows:

Ustr — Autt . (P(:c$t)a ; (18)
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where zp(a: t) satisfies the estimate _
vrai muax lo(z, f)l <R (19)

and K, depends only on the numbers My, M), and M,, and the functions c(z t), f(z,t),
uo(z), ua(2), vo(z), vi(z), and u(z,t). The routine calculations (see, for example, [15])
together with (19) allow us to prove the integral estimate

[kt (802 + (Bu? + (At < Ry
Q :
where Ry depends cni_ly on the numbers Mg, M;, and M, and the functions ¢(z,t), f(z,#),
uo{z), us(z), vo{z), vi(z), and u(z,t). Assume that R, satisfies Ry > R,.
e have _
f 2, + (Au)? + (Aug)? + (Auw))dzdt < Ry,

Q .
So, if the numbers My, M,, M,, and R, satisfy the above conditions, then the operator
& transforms the set W into W
Show now that ¢ is a compact operator.
Let the sequence {vn(z,t)}5., be bounded on the space Vi. Then {u.(z,)}Z.,,
Um = P{v,) is also bounded on V3. So, there exist subsequences {vn (z,)}i2, and
{ttm, (2,1}}72, such that '

Vi, (2, 1) k:}wv(:c,t), Um, (2, 1) kjwu(z,t) almost everywhere on @,
NN h:;}m'vg(m,.t), Upngt{2, 1) k:}mu;(:c,t) almost everywhere on @,

Vmyet(2,8) = VT, 8, U2, 1) — uge(z,t) almost cverywhere on Q,
Vgt 2, 0) = vae(2,0), Umpa{z,0) — uue(2,0) almost everywhere on D,
Uyt (2, 8) = Vol 2,8), U2, 1) = Use(2, 1) weakly in L(Q),
A,z  t) = Dvglz,t), Atimul{z,t) — Aun(z,t) weakly in L(Q).  {(20)
Assume that pp{z), ge{z), filz,t), p(2), g(z), and f(=z,t} are functions determined by the

functions v, (2,8} v(z,t), respectively. It follows from (20) that u = $(v). Hence, we
have

(e — ) — Q(_“m*u — Uz} + A(tmyee — the) _
+eq(Umyer — ) = fio = f + (P — pr)vmuens ".E'_C(Q - @k e (21)
Repeating for (21) the calculations which give the integral estimate for (1'), (12)~(14) and

again using {20) for the sequences {umk(:n £)}32, and {vm*(:z )32, we easily infer the
convergence _

it = + (Bt = B+ (Bt~ B? +-(Aumw~mﬂ)*1dzdt.,,;+w 0. (22)
Convergences (20} (22) mean that the sequence {u., (=, t)}?f.-.x converges weakly in V.
In other words, for every sequence {v,(z,t)}5.; bounded in Vs we may construct the
sequence {vm,(2,t)}32,; such that {®(vs,)}5%, converges weakly in V3. This means that
® is a compact operator. _

So, we prove that for ® and the constructed set W all condztwns of the Schauder
Theorem are satisfied. By this theorem there is a function u(z,%) in W satisfying the
boundaa:y value cond:tlons {12)-(14) and solving the equation

Puthsr = Dttge + Aty + cq'uutt fu(z:r t) - . (23)
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Note that by (5), (8) and the maximum principle the .mequahty un(z,t) < 0 holds at
almost every point (z,t) of the cylinder @ for the function u(z,t). Then the functions
pu(x) and gu(z) have the form
pulz) = Ai(z) wlz) = Ci{z) + Dy(z)un(z,0)
¢ Alz) + B(z)uu(e,0) ™ A(z) + B(z)uw(z,0)
Further, repeating the proof of (17}, we easily establish the estimate

A ky
- /\(1 _ A(}) _ kz n‘lax{ /\ Hu? U}

Together with nonnegativeness of the function wn(z,t), this means that we infer the
inequalities

vrai max |1e,]
e

—k < un(z,t) <0 (24)

at almost all (z,t) of .

Integrating {24) from t to T and using {10), we obtain that for the function w(x, t) the
following inequalities hold
by < wfz,t) <0 (25)
for almost all {z,%) of Q. In turn, integrating (25) from 0 to ¢ and once more using (10),
we derive that for u{z, t} the inequalities
0 < w{z,t) < ao {26)

also hold at all points {2,%) of (.
Inequalities (25) and {26} imply Go{u} = v and G){uz) = u,. Then (23) turns into the
equation
Puthess = Dty + Mgy + o@utty + 2¢equtts + Creguts = fou. (27)

Integrating {27) in the variable t from § to 7', after routine but s;mpie calculations we
obtaln

Alug(z,0) ~ vo(@)] = Afe(2, 0) — vo(2)] - e(=,0)qulua(2,0) —vo(2)] = 0. (28)
The functions uy{z, 0) and vo(z) agree for ¢ € I'. Equation (28) yields that this functions
agree for x € D as well. In other words, (27) meeting (12)~(14) also satisfies {(2).

We then integrate (27) with respect to t from 0 to the varying point ¢*. Using (2}, (13),
and {14) and renaming the variable ¢*, once again after simple but routine calculations
we arrive at the equality

_ Puthey — Aty + Aty + ogutty + g u = fi (29)
Integrating (29) in the variable ¢ from 0 to ¢*, using {2), (14), and (13), and renaming ¢*,
we obtain that a solution to equation {27) is a solution to the equation
puts — At + du + cguu = f,

ie., (1).
The proof of the theorem is complete.
Using the above theorem and extra conditions on the initial data, we may study

INVERSE PROBLEM 11. Find the functions u(z,t), p(z), and g(z) satisfying (1), the
conditions

uw(z,0) = uo(z), uel2,0) = w(z), u(z,T)= ul'(:c} for z€ D, (2
and condition (3). :
Let v,{z) be the function |
on(s) = mc(z,T)m(m)C;(&c)' _
A;(z)




Instead of Inverse Problem II we consider Inverse Problem I with given functions uo(z),
vo(z), and p(z,t) and the above-introduced function v;(z). Under all conditions of the
‘Main Theorem, this problem has a solution {u(z,t),p(z),g(z)} of the class determined
in the theorem. Now, assume that the conditions :

Auo(z) — Mo(z) = ~f(2,0) for z€ D; | (30)

Auy(z) — A (z) = —f(z,T) for z€D (31)
hold. Integrating (29) in the variable ¢ from 0 to T', we then lead to
Alu(z, T) — wy(z)] = Aju(z, T) — wi(z)] — (2, T)g(z)[w(z,T) — ui(z)] = 0.

The last equation implies that the functions u(z,T) and u(z) coincide for z € D. In
other words, under the conditions of the Main Theorem and conditions (30) and (31),
a solution of Inverse Problem I with a special function vi(z) is a sought solution of
Inverse Problem I1I.

In conclusion, we make a few remarks.

Firstly, instead of (1) we may consider more general equations. For instance, the number
A may be changed by the function A(z,t); the coefficient for u,(z,t) may be as p(z)a(z,?)
with p(z) unknown coefficient and a(z,t) the given function as before.

Secondly, existence of solutions to Inverse Problems I and II was proven in the spaces
constructed by means of the L, and Lo, spaces. The method, exposed in the present
article, makes it possible to prove existence of solutions to Inverse Problems I and II in
the spaces constructed by means of Holder spaces.

Thirdly, the algebraic conditions of the Main Theorem are mostly sufficient but not
minimal. They may be improved in many cases. Moreover, these conditions clearly
describe a nonempty class of input data for Inverse Problems I and II.

Finally, the method of the present article is applicable to other inverse problems.
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